Python–seaborn.joint plot()方法
原文:https://www.geesforgeks.org/python-seaborn-joint plot-method/
Seaborn 是基于 matplotlib 的 Python 数据可视化库。它提供了一个高级界面,用于绘制吸引人且信息丰富的统计图形。Seaborn 帮助解决了 Matplotlib 面临的两大问题;问题是。
- 默认 Matplotlib 参数
- 使用数据框
随着 Seaborn 对 Matplotlib 的补充和扩展,学习曲线是相当渐进的。如果你知道 Matplotlib,你已经走过了半个 Seaborn。
seaborn.jointplot():
用二元和一元图画出两个变量的曲线图。这个函数为“联合网格”类提供了一个方便的接口,有几种固定的图。这是一个相当轻量级的包装器;如果需要更大的灵活性,应该直接使用:class:'JointGrid '。
语法: seaborn.jointplot(x,y,data=None,kind= '散点',stat_func=None,color=None,height=6,ratio=5,space=0.2,dropna=True,xlim=None,ylim=None,joint_kws=None,marginal_kws=None,annot_kws=None,**kwargs)
参数:部分主要参数描述如下:
x,y: 这些参数取“数据”或“数据”中变量的名称。
数据:(可选)当“x”和“y”为变量名时,此参数取 DataFrame。
种类:(可选)此参数取种类图进行绘制。
颜色:(可选)该参数采用用于绘图元素的颜色。
dropna: (可选)该参数取布尔值,如果为真,则删除“x”和“y”中缺失的观察值。
返回:带有地块的 jointgrid 对象。
下面是上述方法的实现:
例 1:
蟒蛇 3
# importing required packages
import seaborn as sns
import matplotlib.pyplot as plt
# loading dataset
data = sns.load_dataset("attention")
# draw jointplot with
# hex kind
sns.jointplot(x = "solutions", y = "score",
kind = "hex", data = data)
# show the plot
plt.show()
# This code is contributed
# by Deepanshu Rustagi.
输出:
例 2:
蟒蛇 3
# importing required packages
import seaborn as sns
import matplotlib.pyplot as plt
# loading dataset
data = sns.load_dataset("mpg")
# draw jointplot with
# scatter kind
sns.jointplot(x = "mpg", y = "acceleration",
kind = "scatter", data = data)
# show the plot
plt.show()
# This code is contributed
# by Deepanshu Rustagi.
输出:
例 3:
蟒蛇 3
# importing required packages
import seaborn as sns
import matplotlib.pyplot as plt
# loading dataset
data = sns.load_dataset("exercise")
# draw jointplot with
# kde kind
sns.jointplot(x = "id", y = "pulse",
kind = "kde", data = data)
# Show the plot
plt.show()
# This code is contributed
# by Deepanshu Rustagi.
输出:
例 4:
蟒蛇 3
# importing required packages
import seaborn as sns
import matplotlib.pyplot as plt
# loading dataset
data = sns.load_dataset("titanic")
# draw jointplot with
# reg kind
sns.jointplot(x = "age", y = "fare",
kind = "reg", data = data,
dropna = True)
# show the plot
plt.show()
# This code is contributed
# by Deepanshu Rustagi.
输出: